

### **Tailored Availability Metric**

#### **Emily Conway**

Associate Market Design Specialist

#### ICAPWG/MIWG

January 30, 2020

### Agenda

- Background and Recap
- Availability-based resources
- Wind and solar resources
- Next Steps and Schedule
- Appendix



# Background and Recap



### A Grid in Transition – The Plan

- Carbon Pricing
- Comprehensive Mitigation Review
- DER Participation Model
- Energy Storage
   Participation Model

Aligning Competitive Markets and New York State Clean Energy Objectives



• Enhancing Energy & Shortage Pricing

- Ancillary Services Shortage
   Pricing
- Constraint Specific Transmission Shortage Pricing
- Enhanced Fast Start Pricing
- Review Energy & Ancillary Services Product Design
  - More Granular Operating Reserves
  - Reserve Enhancements for Constrained Areas
  - Reserves for Resource Flexibility

Valuing Resource & Grid Flexibility



#### • Enhancements to Resource Adequacy Models

- Revise Resource Capacity Ratings to Reflect Reliability Contribution
  - Expanding Capacity Eligibility
  - Tailored Availability Metric
- Capacity Demand Curve Adjustments

Improving Capacity Market Valuation





#### Recap

- 2020 Deliverable: Q2 Market Design Complete for a 2021 Implementation
- 2019 Deliverable: Market Design Concept Proposal
  - For availability-based resources, the NYISO proposed the weightings of peak months in the Market Design Concept Proposal
  - For wind and solar resources, the NYISO proposed a reoccurring study that will result in relative capacity value weightings across the Peak Load Window hours



# Availability-based Resources



### Background

- The current methodology for calculating a Capability Period AEFORd is the average of six consecutive (rolling) 12-month EFORd calculations
  - Under this construct:
    - It is assumed outages are random
    - Winter outages directly effect a Summer AEFORd
    - Respective peak months (June, July, and August) account for 25% of the calculation



New York ISO

#### Proposal

- At this time, the NYISO is seeking stakeholder feedback on the following proposed changes for resources that use the EFORd or UOL for the derating factor
- The NYISO proposes changing the structure of the EFORd to take the average of the previous 3 like-Capability Periods
  - Under this construct:
    - An 18-month time-frame could mirror the current 17-month time-frame used today
    - Outages directly effect their respective Capability Period (i.e. Winter outages are reflected in the Winter EFORd)
    - Respective peak months account for 50% of the calculation
- Under this structure, resources would have the incentive to be available in a particular season which will be in sync with market revenues



#### Proposal



• The average of the three 6-month EFORds shown in the example would be used to calculate the 2018 Summer Capability Period AEFORd



#### Analysis

- Initial analysis calculated the change in the translation factor between the current mechanism used today and the proposed methodology
  - Translation factor = 1 Derating Factor (see Appendix)
  - The delta value shows: (the proposed translation factor the current translation factor)
- Calculations show there is not a significant change in the AEFORd between the two methodologies
  - Analysis included 3 peaker gas turbine units, and 1 steam turbine unit
  - GT Unit 3 recorded fairly high EFORds (more outages) in Summer 2015 and 2016, which is not heavily reflected in the current EFORd used today
- A similar methodology is used in the IRM set by the Reliability Council, which calculates an EFORd using data from the previous 5 years

| Summer 2018 |             |  |
|-------------|-------------|--|
| Unit Name   | Translation |  |
| GT Unit 1   | 0.85        |  |
| GT Unit 2   | 0.14        |  |
| GT Unit 3   | -8.33       |  |
| ST Unit 4   | 1.45        |  |

| Winter 2018-19 |              |  |
|----------------|--------------|--|
| Unit Name      | Translation  |  |
|                | Factor Delta |  |
| GT Unit 1      | 3.04         |  |
| GT Unit 2      | 0.76         |  |
| GT Unit 3      | -6.44        |  |
| ST Unit 4      | 1.33         |  |





- The current performance factor for performance-based Installed Capacity Suppliers is based on actual performance over peak periods
  - For wind and solar resources, performance factors are calculated based on the current 4-hour window in the respective peak months
    - Summer:
      - HB 14 HB 17
      - June, July, and August
    - Winter:
      - HB 16 HB 19
      - December, January, and February
  - Performance factors are calculated by dividing the output performance by the nameplate capacity of the resource



- As a part of the Market Design Concept Proposal, the NYISO proposed a reoccurring study every 4 years, that would result in hourly capacity value weightings across the Peak Load Window
  - Weightings would be applied to the respective hourly production data
  - The study would run concurrently with the study for Expanding Capacity Eligibility
  - Each study could reset the top 4 hours within the Peak Load Window and percentages based on the percentages for Expanding Capacity Eligibility
- Initial analysis shows potential weighting percentages across the Peak Load Window based off of different IRM cases
  - Tying the percentages to Loss of Load Events reflects the highest needs of the system



• The following cases show the differences in the hourly LOLE percentages of the top 4 hours:

|             | 2019 IRM Fin | al Base Case |   |             | 2020 IRM Prelim | ninary Base Case |   |             | High Renewal | oles (12K) Case |
|-------------|--------------|--------------|---|-------------|-----------------|------------------|---|-------------|--------------|-----------------|
| HB          | 8 Hour       | 6 Hour       |   | HB          | 8 Hour          | 6 Hour           |   | HB          | 8 Hour       | 6 Hour          |
| 12          | 7%           |              |   | 12          | 7%              |                  |   | 12          | 5%           |                 |
| 13          | 13%          | 14%          |   | 13          | 13%             | 14%              |   | 13          | 11%          | 12%             |
| 14          | 17%          | 19%          |   | 14          | 17%             | 19%              |   | 14          | 16%          | 18%             |
| 15          | 19%          | 21%          |   | 15          | 19%             | 21%              |   | 15          | 18%          | 20%             |
| 16          | 19%          | 21%          |   | 16          | 19%             | 21%              |   | 16          | 19%          | 21%             |
| 17          | 14%          | 15%          |   | 17          | 13%             | 15%              |   | 17          | 16%          | 18%             |
| 18          | 9%           | 10%          |   | 18          | 9%              | 10%              |   | 18          | 9%           | 10%             |
| 19          | 3%           |              |   | 19          | 4%              |                  |   | 19          | 5%           |                 |
|             |              |              | - |             |                 |                  | _ |             |              |                 |
| Top 4 Hours | 68%          | 76%          |   | Top 4 Hours | 68%             | 76%              | ] | Top 4 Hours | 69%          | 78%             |

- The High Renewables Case runs the 2020 Base Case with an additional 12,000 MW of renewable resources
  - 4,000 MW of solar, 4,000 MW of onshore wind, and 4,000 MW of offshore wind
- The whitepaper that describes the high renewable study can be found here:
  - <u>http://nysrc.org/PDF/MeetingMaterial/ECMeetingMaterial/EC%20Agenda%20249/4.3%20High%20Renewable%20Resource%20Mode</u> <u>ling%20White%20Paper%20v1.1%201-7-2020-Attachment%204.3.pdf</u>



- The relative capacity value weightings established will align with the Peak Load Windows proposed in the Expanding Capacity Eligibility project
  - 6 hour Peak Load Window:
    - Summer: HB 13 HB 18
    - Winter: HB 16 HB 21
  - 8 hour Peak Load Window:
    - Summer: HB 12 HB 19
    - Winter: HB 14 HB 21
  - The duration of the Peak Load Window is dependent on resources with duration limitations



#### Proposal

- At this time, the NYISO is seeking stakeholder feedback on the following proposed changes for wind and solar resources
- For a 6-hour PLW, the top 4 hours will receive a 75% weighting
  - Weightings of the shoulder 2 hours will be equally weighted at 12.5% each
- For an 8-hour PLW, the top 4 hours will receive a 70% weighting
  - Weightings of the shoulder 4 hours are still being evaluated
    - All 4 shoulder hours could be equally weighted at 7.5% each
    - Alternatively, the top 2 shoulder hours could be weighted higher than the bottom 2 shoulder hours



#### Proposal

- Summer and Winter Capability Period months will receive the same set of weightings, within its respective Peak Load Window hours
  - For the Winter PLW, the top 4 hours could remain consistent with methodology used today, and the top load hours from Expanding Capacity Eligibility (HB 16 – HB 19)
- Under this construct, wind and solar resources will still have the opportunity to receive 100% performance factors if they perform in all hours of the Peak Load Window

|    | Summer Peak | Winter Peak |
|----|-------------|-------------|
|    | Load Window | Load Window |
| HB | 6 Hour      | 6 Hour      |
| 12 |             |             |
| 13 | 12.5%       |             |
| 14 | 18.75%      |             |
| 15 | 18.75%      |             |
| 16 | 18.75%      | 18.75%      |
| 17 | 18.75%      | 18.75%      |
| 18 | 12.5%       | 18.75%      |
| 19 |             | 18.75%      |
| 20 |             | 12.5%       |
| 21 |             | 12.5%       |
|    |             |             |

|  | Top 4 Hours | 75% | 75% |
|--|-------------|-----|-----|
|--|-------------|-----|-----|



### **Next Steps**



#### **Next Steps**

- Based off of the stakeholder feedback received today, the NYISO will continue discussion at a future working group date
- Additional analysis for wind and solar will show the percentages of the top 4 hours in the Peak Load Window of additional cases
  - A 2020 Base Case with 4,000 MW of renewable resources added incrementally will be assessed



# Feedback/Questions?

The NYISO will consider input received during today's Working Group meeting and further input sent in writing to deckles@nyiso.com and econway@nyiso.com



## Appendix



#### Recap

- March 7<sup>th</sup>, 2019: The NYISO discussed expanding the project scope to include all availability-based and performancebased resources
  - <u>https://www.nyiso.com/documents/20142/5375692/Tailored%20Availability%20Metric.pdf/92ef1b5d-0ec3-cee5-df69-e2130934ec0e</u>
- May 9<sup>th</sup>, 2019: The NYISO presented initial analysis for availability-based resources that use the EFORd
  - <u>https://www.nyiso.com/documents/20142/6474763/Tailored%20Availability%20Metric%20050919.pdf/2c86f002-0fe5-b3cb-05d8-f118e4dd392f</u>
- July 24<sup>th</sup>, 2019: The NYISO presented the Market Design Concept Proposal for availability-based resources that use the EFORd as their derating factor
  - <u>https://www.nyiso.com/documents/20142/7674442/Tailored%20Availability%20Metric.pdf/e28df5c2-6994-ba5c-7ca2-05abeba9daeb</u>
- August 23<sup>rd</sup>, 2019: The NYISO began discussion of analysis options for performance-based resources
  - <u>https://www.nyiso.com/documents/20142/8040247/tailored%20availability%20metric%20082319.pdf/ada7cacf-97aa-699a-7ead-e1e39b1a51f8</u>
- October 18<sup>th</sup> , 2019: The NYISO continued discussion of analysis for performance-based resources
  - <u>https://www.nyiso.com/documents/20142/8783504/Tailored%20Availability%20Metric.pdf/7a9c6c65-f218-b685-a2d5-16f491276d29</u>
- November 21<sup>st</sup>, 2019: The NYISO presented the Market Design Concept Proposal for performance-based resources
  - https://www.nyiso.com/documents/20142/9312827/Tailored%20Availability%20Metric.pdf/c4271e59-b0e0-7c0a-c2f9-15cc91bbb2ef
    New York ISO

# Availability-based Resources



### Background

- Unforced Capacity (UCAP) is the amount of capacity a Resource is qualified to supply
  - UCAP = Minimum ICAP x (1 Derating Factor)
- Translation factor 1 Derating Factor is used to measure availability of a Resource
  - Takes into account forced outages and forced deratings



#### GT Unit 1

• Summer 2018

| Year | EFORd |
|------|-------|
| 2015 | 4.07  |
| 2016 | 24.92 |
| 2017 | 11.38 |
|      |       |
| 2018 | 13.46 |

| Calc. No | EFORd |
|----------|-------|
| 1        | 21.20 |
| 2        | 16.47 |
| 3        | 13.24 |
| 4        | 10.55 |
| 5        | 11.36 |
| 6        | 13.05 |
|          |       |
| 2018     | 14.31 |

| Delta |
|-------|
| -0.85 |

#### • Winter 2018-19

| Year    | EFORd |
|---------|-------|
| 2015-16 | 4.62  |
| 2016-17 | 10.09 |
| 2017-18 | 17.40 |
|         |       |
| 2018-19 | 10.70 |

| Calc. No | EFORd |
|----------|-------|
| 1        | 15.05 |
| 2        | 14.78 |
| 3        | 14.36 |
| 4        | 14.31 |
| 5        | 13.74 |
| 6        | 10.23 |
|          |       |
| 2018     | 13.74 |

| Delta |
|-------|
| -3.04 |



#### GT Unit 2

• Summer 2018

| Year | EFORd |
|------|-------|
| 2015 | 2.26  |
| 2016 | 0.12  |
| 2017 | 2.63  |
|      |       |
| 2018 | 1.67  |

| alc. No | EFORd |
|---------|-------|
| 1       | 1.75  |
| 2       | 1.70  |
| 3       | 1.75  |
| 4       | 1.78  |
| 5       | 1.79  |
| 6       | 2.07  |
|         |       |
| 2018    | 1.81  |

| Delta |
|-------|
| -0.14 |

#### • Winter 2018-19

| Year    | EFORd |
|---------|-------|
| 2015-16 | 1.87  |
| 2016-17 | 0.64  |
| 2017-18 | 0.11  |
|         |       |
| 2018-19 | 0.87  |

| Calc. No | EFORd |
|----------|-------|
| 1        | 2.16  |
| 2        | 1.92  |
| 3        | 1.94  |
| 4        | 1.87  |
| 5        | 1.84  |
| 6        | 0.05  |
|          |       |
| 2018     | 1.63  |

|   | Delta |
|---|-------|
| I | -0.76 |



#### GT Unit 3

• Summer 2018

| Year | EFORd |
|------|-------|
| 2015 | 22.45 |
| 2016 | 37.36 |
| 2017 | 0.37  |
|      |       |
| 2018 | 20.06 |

| alc. No | EFORd |
|---------|-------|
| 1       | 21.71 |
| 2       | 13.02 |
| 3       | 6.10  |
| 4       | 0.43  |
| 5       | 9.76  |
| 6       | 19.36 |
|         |       |
| 2018    | 11.73 |

| Delta |
|-------|
| 8.33  |

| Year    | EFORd                                         |
|---------|-----------------------------------------------|
| 2015-16 | 54.50                                         |
| 2016-17 | 1.75                                          |
| 2017-18 | 91.13                                         |
|         |                                               |
| 2018    | 49.13                                         |
|         | Year<br>2015-16<br>2016-17<br>2017-18<br>2017 |

• Winter 2018-19

| Calc. No | EFORd |
|----------|-------|
| 1        | 28.27 |
| 2        | 35.92 |
| 3        | 42.43 |
| 4        | 45.42 |
| 5        | 49.41 |
| 6        | 54.65 |
|          |       |
| 2018     | 42.68 |





### ST Unit 4

• Summer 2018

| Year | EFORd |
|------|-------|
| 2015 | 0.42  |
| 2016 | 1.88  |
| 2017 | 5.67  |
|      |       |
| 2018 | 2.66  |

| Calc. No | EFORd |
|----------|-------|
| 1        | 4.85  |
| 2        | 4.92  |
| 3        | 5.04  |
| 4        | 3.59  |
| 5        | 3.22  |
| 6        | 3.05  |
|          |       |
| 2018     | 4.11  |

| Delta |
|-------|
| -1.45 |

| Year    | EFORd |  |  |  |  |  |
|---------|-------|--|--|--|--|--|
| 2015-16 | 3.03  |  |  |  |  |  |
| 2016-17 | 0.00  |  |  |  |  |  |
| 2017-18 | 0.61  |  |  |  |  |  |
|         |       |  |  |  |  |  |
| 2018    | 1.22  |  |  |  |  |  |

| Calc. No | EFORd |
|----------|-------|
| 1        | 3.03  |
| 2        | 2.92  |
| 3        | 2.99  |
| 4        | 3.06  |
| 5        | 2.96  |
| 6        | 0.29  |
|          |       |
| 2018     | 2.54  |

| D  | elta |
|----|------|
| -: | 1.33 |





### **Proposal for Wind and Solar Resources**

- Based off analysis done thus far, the NYISO is proposing a reoccurring study for wind and solar resources
  - The study will run concurrently with the Capacity Value Study and will be conducted every 4 years
  - The Capacity Value Study and this study will use a similar base case
    - The base case built on will be from the IRM Study
    - For this base case, additional wind and solar resources could potentially be added to establish relative capacity value weightings for wind and solar resources
- The proposal would be effective in 2021
  - An initial study would be conducted in the Market Design Complete stage (Q2 of 2020)



### **Proposal for Wind and Solar Resources**

- The relative capacity value weightings will be shaped across the Peak Load Window hours
  - A subset of Peak Load Window hours will be weighted higher than the remaining shoulder hours
    - Preliminary weightings will be established as a part of the Market Design Complete
- Summer and Winter Capability Period months will receive the same set of weightings, within its respective Peak Load Window hours





#### Wind and Solar Capacity Factors

Delta of: 6-hour PLW with top 4 hours at 90% vs 75%

|      | Summer Solar          |  |  |  |  |  |  |
|------|-----------------------|--|--|--|--|--|--|
|      | 6-Hour PLW            |  |  |  |  |  |  |
| Year | 90% to 75% Comparison |  |  |  |  |  |  |
| 2012 | 1.4%                  |  |  |  |  |  |  |
| 2013 | 1.4%                  |  |  |  |  |  |  |
| 2014 | 1.7%                  |  |  |  |  |  |  |
| 2015 | 1.4%                  |  |  |  |  |  |  |
| 2016 | 1.6%                  |  |  |  |  |  |  |
|      |                       |  |  |  |  |  |  |

1.5%

0.1%

|      | Summer Wind           |
|------|-----------------------|
|      | 6-Hour PLW            |
| Year | 90% to 75% Comparison |
| 2012 | 0.2%                  |
| 2013 | 0.1%                  |
| 2014 | 0.2%                  |
| 2015 | 0.2%                  |
| 2016 | 0.4%                  |
|      | _                     |
|      | 0.2%                  |
|      |                       |

|      | Winter Solar          |
|------|-----------------------|
|      | 6-Hour PLW            |
| Year | 90% to 75% Comparison |
| 2012 | 0.2%                  |
| 2013 | 0.1%                  |
| 2014 | 0.2%                  |
| 2015 | 0.2%                  |
| 2016 | 0.1%                  |

|      | Winter Wind           |
|------|-----------------------|
|      | 6-Hour PLW            |
| Year | 90% to 75% Comparison |
| 2012 | -0.4%                 |
| 2013 | -0.6%                 |
| 2014 | -0.4%                 |
| 2015 | -0.4%                 |
| 2016 | -0.3%                 |
|      |                       |

-0.4%



### Additional Requested Analysis for Special Case Resources

- Material on the following slides was presented on July 30, 2019 from the NYSRC ICS meeting
  - http://www.nysrc.org/pdf/MeetingMaterial/ICSMeetingMaterial/ICS%20Agenda%20223/Al%2 04%20-%20SCR%20Performance%20Analysis.pdf



### Introduction

- NYISO calculates SCR zonal performance factors for IRM studies based on historical SCR performance. The data set includes:
  - All event hours, by zone, for each mandatory event from the most recent five years in which a mandatory event was initiated by the NYISO (but not older than summer 2012)
  - All performance test hours accumulated during the above timeframe even when there were no mandatory events
- The ICS has requested that NYISO investigate the impact using data from only mandatory SCR Events, in lieu of the Event & Test data, would have on the SCR Model Value MWs



### **Overview – Event & Test**

#### Event:

- Called when Operating Reserves shortages are forecasted or during an actual Operating Reserve shortage
- Events have typically ranged between 4 to 6 hours
  - For IRM Analysis: Performance from all event hours are used
  - For Market Participation: Best 4 consecutive hours are used

#### Test:

- Resources must demonstrate their maximum enrolled Declared Value once every Capability Period
- Mandatory 1 hour performance per Capability Period



### **Inputs for Analysis**

- Same data set used for calculating SCR Model Values
  - Event & Test:
    - All event hours, by zone, from mandatory events from summer 2012 through summer 2018
      - Range from 20 event hours for Zone A to 64 event hours for Zone J
    - All performance test hours from summer 2012 through summer 2018
      - 13 performance test hours
  - Event Only:
    - All event hours, by zone, from mandatory events from summer 2012 through summer 2018
      - Range from 20 event hours for Zone A to 64 event hours for Zone J
    - 13 Performance test hours not included in analysis



#### **Comparison: Event & Test vs Event Only**

| SCR Performance for 2020 IRM |              |           |              |            |             |             |            |            |             |             |          |            |             |             |
|------------------------------|--------------|-----------|--------------|------------|-------------|-------------|------------|------------|-------------|-------------|----------|------------|-------------|-------------|
|                              |              |           | Event & Test |            |             |             | Event Only |            |             | Comparison  |          |            |             |             |
|                              |              |           |              |            | Effective   |             |            |            | Effective   |             |          |            | Effective   |             |
|                              |              | July 2019 |              | ACL to CBL | Performance | Model Value |            | ACL to CBL | Performance | Model Value |          | ACL to CBL | Performance | Model Value |
| Program                      | Zone         | MW        | Zonal PF     | Factor     | Factor      | MW          | Zonal PF   | Factor     | Factor      | MW          | Zonal PF | Factor     | Factor      | MW          |
| SCR                          | A-F          | 629.3     | 86.8%        | 94.1%      | 81.7%       | 514.2       | 80.1%      | 94.3%      | 75.4%       | 474.3       | -6.74    | 0.19       | -6.34       | -39.9       |
| SCR                          | G-I          | 125.5     | 75.6%        | 85.1%      | 64.3%       | 80.7        | 65.5%      | 84.3%      | 55.2%       | 69.3        | -10.11   | -0.81      | -9.07       | -11.4       |
| SCR                          | J            | 478.9     | 69.1%        | 75.3%      | 52.0%       | 249.0       | 64.7%      | 76.8%      | 49.6%       | 237.7       | -4.44    | 1.48       | -2.36       | -11.3       |
| SCR                          | К            | 48.2      | 71.8%        | 82.3%      | 59.1%       | 28.5        | 65.6%      | 85.0%      | 55.7%       | 26.9        | -6.23    | 2.69       | -3.38       | -1.6        |
| Tot                          | Total 1281.9 |           | 872.4        |            |             |             | 808.2      |            |             |             |          |            |             |             |
|                              |              |           |              |            |             | 68.2%       |            |            |             | 63.0%       |          |            |             | -5.0%       |

5.0% decrease in Effective Performance Factor when using Event data only, versus Event & Test data



### **Observations from Comparison**

#### **Zonal Performance Factor:**

• Using Event data only to measure performance decreases the Zonal Performance Factor in all zones (ranging from -4.44 in J to -10.11 in G-I) compared to current Event & Test methodology

#### • ACL to CBL Translation Factor:

- Using Event data only had a minimal impact (ranging from a decrease of 0.81 in G-I to an increase of 2.69 in K) on Translation Factor
- In general, the Translation Factor slightly increased, with the exception of zones G-I, where there was a slight decrease

#### Effective Performance Factor

• Using Event only data to measure performance decreases the Effective Performance Factor by 5% compared to current Event & Test methodology

http://www.nysrc.org/pdf/MeetingMaterial/ICSMeetingMaterial/ICS%20Agenda%20223/AI%204%20-%20SCR%20Performance%20Analysis.pdf



# Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system



